1,988 research outputs found

    Direct Detection of Galactic Halo Dark Matter

    Get PDF
    The Milky Way Galaxy contains a large, spherical component which is believed to harbor a substantial amount of unseen matter. Recent observations indirectly suggest that as much as half of this ``dark matter'' may be in the form of old, very cool white dwarfs, the remnants of an ancient population of stars as old as the Galaxy itself. We conducted a survey to find faint, cool white dwarfs with large space velocities, indicative of their membership in the Galaxy's spherical halo component. The survey reveals a substantial, directly observed population of old white dwarfs, too faint to be seen in previous surveys. This newly discovered population accounts for at least 2% of the halo dark matter. It provides a natural explanation for the indirect observations, and represents a direct detection of Galactic halo dark matter.Comment: 13 pages, 4 figures, 1 table. Note added after Science Express online publication: This text reflects the correction of a few typographical errors in the online version of the table. It also includes the new constraint on the calculation of d_max which accounts for the fact that the survey could not have detected stars with proper motions below 0.33 arcseconds per year. Published online at ScienceExpress www.sciencemag.org 22 March 2001; 10.1126/science.1059954; To appear in Science 27 April 200

    The Monitor Project: Stellar rotation at 13~Myr: I. A photometric monitoring survey of the young open cluster h~Per

    Full text link
    We aim at constraining the angular momentum evolution of low mass stars by measuring their rotation rates when they begin to evolve freely towards the ZAMS, i.e. after the disk accretion phase has stopped. We conducted a multi-site photometric monitoring of the young open cluster h Persei that has an age of ~13 Myr. The observations were done in the I-band using 4 different telescopes and the variability study is sensitive to periods from less than 0.2 day to 20 days. Rotation periods are derived for 586 candidate cluster members over the mass range 0.4<=M/Msun<=1.4. The rotation period distribution indicates a sligthly higher fraction of fast rotators for the lower mass objects, although the lower and upper envelopes of the rotation period distribution, located respectively at ~0.2-0.3d and ~10d, are remarkably flat over the whole mass range. We combine this period distribution with previous results obtained in younger and older clusters to model the angular momentum evolution of low mass stars during the PMS. The h Per cluster provides the first statistically robust estimate of the rotational period distribution of solar-type and lower mass stars at the end of the PMS accretion phase (>10 Myr). The results are consistent with models that assume significant core-envelope decoupling during the angular momentum evolution to the ZAMS.Comment: 39 pages, 19 figures, light curves in appendix, 1 long tabl

    Forever Young: High Chromospheric Activity in M subdwarfs

    Get PDF
    We present spectroscopic observations of two halo M subdwarfs which have H alpha emission lines. We show that in both cases close companions are the most likely cause of the chromospheric activity in these old, metal-poor stars. We argue that Gl 781 A's unseen companion is most likely a cool helium white dwarf. Gl 455 is a near-equal-mass M subdwarf (sdM) system. Gl 781 A is rapidly rotating with v sin i = 30 km/s. The properties of the chromospheres and X-ray coronae of these systems are compared to M dwarfs with emission (dMe). The X-ray hardness ratios and optical chromospheric lines emission ratios are consistent with those seen in dMe stars. Comparison to active near-solar metallicity stars indicates that despite their low metallicity ([m/H] = -1/2), the sdMe stars are roughly as active in both X-rays and chromospheric emission. Measured by L_X/L_bol, the activity level of Gl 781 A is no more than a factor of 2.5 subluminous with respect to near-solar metallicity stars.Comment: 16 pages including 1 figure, AASTeX, to appear in May 1998 A.
    • …
    corecore